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Abstract 

 
Feature modeling is commonly used to 

capture the commonalities and variabilities of 
systems in a domain during Domain Analysis. 
The output of feature modeling will be some 
reusable assets (components, patterns, domain-
specific language, etc.) to be fed into the 
application engineering phase for ultimate 
software products. But current practice lacks an 
automatic approach for seamless generation of 
reusable assets from feature models. This paper 
presents an algorithm for generating sets of 
instance descriptions (feature instances) from 
feature models of a domain and applies this 
algorithm in creating a Generic Feature 
Modeling Environment for automating Feature-
Oriented Domain Analysis.  
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1. Introduction 
 
      Generative Programming (GP) [Czar00] has 
emerged as a software development paradigm for 
automatic generation of  software products based 
on modeling of software system families. The 
distinct property of GP is it is not only about a 
development for reuse in terms of building a 
Generative Domain Model (GDM) for software 
system families, but also about a development 
with reuse in terms of using GDM to generate 
concrete systems. To build a GDM, domain 

analysis has to be applied to scope a system 
family and to identify the commonalities, 
variabilities and dependencies among family 
members. A crucial outcome of the domain 
analysis phase is a feature model, which is 
usually represented as a feature diagram. 
However, the application of feature diagrams is 
quite limited, due to the fact that current practice 
is not fully automated, while the size of the set of 
feature instances may be expanded exponentially 
(which we will see later in this paper), thus it is 
difficult to apply constraint checking and other 
types of computing. In order to align with the 
goal of GP for the highest level of automation, to 
cope with family system processing (which is 
usually of a large scale), feature modeling should 
be carried out in an automatic fashion to 
seamlessly generate reusable assets to be used in 
application engineering for constructing a family 
of applications. This paper presents an algorithm 
for generating the set of all feature instances 
from a feature diagram and applies this algorithm 
in creating a Generic Feature Modeling 
Environment (GFME) for automating Feature-
Oriented Domain Analysis (FODA). This paper 
is organized as follows: Section 2 briefly 
describes major related research efforts. Section 
3 gives the algorithm for computing feature 
models. Section 4 presents the GFME created 
with the Generic Modeling Environment (GME) 
2000 [GME01]. Section 5 draws the conclusion 
of this paper. 
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2. Related Work 
 
    Feature models were initially introduced by 
the FODA method [Kang90]. In the FODA 
method, a feature is defined as an end-user-
visible characteristic of a system. This model 
uses a feature diagram to represent a hierarchical 
decomposition of features, which include 
mandatory, alternative or optional features.  
Feature constraints, stakeholders and rationales 
are also incorporated in this feature model. 
Czarnecki and Eisenecker [Czar00] give a more 
detailed account of feature diagrams including 
diagram normalization.  
    The FODA method uses Prolog in a prototype 
tool for doing checking over some sets of feature 
values. However, features have to be stored in 
the  Prolog fact base first, rather than being 
analyzed directly over the feature diagram, thus 
the tool is not seamlessly integrated with the 
visual diagram setting. Czarnecki and Eisenecker 
[Czar00] also explore the possible 
implementation of feature diagrams by mapping 
into UML, which in turn may be used to generate 
some implementation codes using such CASE 
tools as Rational Rose1. The mapping process, 
however, is again a manual process. Also, what 
Rational Rose can generate are just some 
skeleton codes, which are far from being 
complete implementations. 
     Feature models can be represented not only in 
graphical form using feature diagrams, but also 
in textual form. Van Deursen and Klint [Deur02] 
propose a Feature Description Language (FDL) 
for textual representation of feature diagrams. 
Manipulation of features is achieved by Feature 
Diagram Algebra (FDA), which consists of four 
sets of rules: normalization rules, variability 
rules, expansion rules and satisfaction rules. The 
FDL can be fed into the a tool named 
“ASF+SDF Meta-Environment” [Bran01] for 
direct execution as a basis for prototype tool 
support, which again is not seamlessly integrated 
with graphical representations of feature 
diagrams; the capacity of constraint checking is 
quite limited; the FDA is separated from, rather 
than integrated as part of the feature diagram; the 
generation of reusable assets from FDL is not 
flexible.  
    Obviously for the related work mentioned in 
this section, there is a gap between using feature 
diagrams for feature modeling and a seamless, 

                                                 
1 www.rational.com 

efficient generation of reusable assets. This paper 
presents an approach toward bridging this gap. 
 
3. An Algorithm for Feature Diagram 
Computing 
 
    In contrast to computing features by 
transforming feature diagrams to some other 
representation forms (such as UML or FDL) 
first, we are going to apply the proposed 
algorithm directly over the feature diagram. We 
first briefly describe the representations used in 
[Czar00] illustrated in Figure 1. The mandatory 
feature is represented by being attached to an 
edge ending with a filled circle. So the feature F 
consists of both C1 and C2 in this case, and the 
feature instances here are {F, C1, C2}. The 
optional feature is represented by being attached 
to an edge ending with an unfilled circle. So the 
feature F may or may not contain C1. The 
optional feature instances here are {F, C2} and 
{F, C1, C2}. The alternative feature is 
represented by connecting edges with an arch. So 
the feature F consists of exactly one of its child 
features. The alternative feature instances here 
are {F, C1} and {F, C2}. Note that if C1 is 
optional while C2 is mandatory, then the 
alternative feature instances here are {F}, {F, 
C1} and {F, C2}, because the child feature 
instances  derived from the C1 side contain an 
empty feature. The Or feature is represented by 
connecting edges with a filled arch. The Or 
feature instances here are {F, C1}, {F, C2} and 
{F, C1, C2}. If there is an optional child feature, 
then the Or representation is actually equivalent 
to the situation that all the child features are 
optional, i.e., the Or feature instances will be 
{F}, {F, C1}, {F, C2} and {F, C1, C2}. 
    These representations can also be intermingled 
in feature diagrams, such as in Figure 2. These 
mixture forms can be normalized so that it is 
easier to be processed. e.g., Figure 2 can be 
normalized into Figure 3.  
   This normalization can be performed 
iteratively over all such “mixture relation” nodes 
in the feature diagram. In this way, the father-
feature in the feature diagram will only be either  
XOR (corresponding to alternative), or OR, or 
AND in relationship to child-features. 
Meanwhile, each child-feature may be either 
optional or mandatory. Obviously, the 
normalization process described here is fulfilled 
by adding hierarchy into the original feature  tree  
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enum {XOR, OR, AND} feature-relation;
/*denotes the father-child relation */

ChildConnectionList *edges;
/*list of connections associated with
its child-feature nodes */
}

struct ChildConnectionList {
bool isMandatory ;

/*is a mandatory/optional feature*/
FeatureNode * aFeature;

/*point to a feature node*/
}

     From the data structure above we can see that 
we can get access to the child-nodes of a feature 
node by traversing its associated edges.  
     Currently, the result of the algorithm to 
compute the feature diagram is just the set of all 
feature instances of a feature diagram. The result 
will be represented as a list. Each element of the 
list corresponds to a feature instance. Each 
feature instance in turn is represented as a list, 
which consists of the list of pointers to the 
related feature node. The result is represented as 
follows: 
typedef List<FeatureInstance *> Result;
typedef List<FeatureNode *>

FeatureInstance;

     Below is the pseudo code for the algorithm. 
The input parameter to the algorithm is the 
pointer to the root node of a feature diagram. The 
output will be all feature instances derived from 
the feature diagram.  Note the variables are in 
italicized font while the types are in bold font. 
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Result * processFeatureDiagram (
FeatureNode *node-root)

{
create a temp1:FeatureInstance with
only node-root in it;

create a temp2: Result with only one
FeatureInstance temp1 in it;

if(node-root has no child nodes)
then return temp2;

else
if (node-root->feature-relation==AND)

{
recursively call processFeatureDiagram
over each of node-root’s child-nodes,
each returning a child result;

if corresponding child node is
“Optional”,
add an empty FeatureInstance into the
corresponding child result;

calculate the production of all the
returned child results as temp3:Result;

return the production of temp2 and
temp3;
}

else
if(node-root->feature-relation==XOR)
{
recursively call processFeatureDiagram
over each of node-root’s child-nodes,
each returning a child result;

calculate the union of those returned
child results as temp3:Result;

if there is a child node that is
“Optional”,
add an empty FeatureInstance into
temp3;

return temp3;
}

else
if(node-root->feature-relation==OR)
{
recursively call processFeatureDiagram
over each of node-root’s child-nodes,
each returning a child result;

for each of the child result returned
in the above call,
add an empty FeatureInstance into it;

get the production of all the child
results as temp3:Result;

If all child features are mandatory,
remove the empty FeatureInstance from
temp3;

return the production of temp2 and
temp3;
}

}

     Beware that a Result is actually a two-
dimension data structure. If Result A has m 
FeatureInstances while Result B has n 
FeatureInstances, then the union of A and B has 
m+n FeatureInstances while the production of 
A and B has m*n FeatureInstances. To 

exemplify the above algorithm, we use ε to 
represent an empty Result, × for production, ∪   
for union operation in Figures 5-7,  which  
correspond to three  types of cases for computing 
the set of feature instances. Also from Figure 7 
we can easily see the size of feature set may 
grow exponentially (as to the extreme case where 
all feature-relations are OR , the size will be 2n, 
where n is the amount of leaf nodes). 
    Here we put the non-leaf node (like F here) 
into the feature instances in order to facilitate 
constraint checking. If one non-leaf feature F is 
supposed to be excluded in the final feature 
instance, then its child-features should not be 
included correspondingly, and we can eliminate 
those feature instances from the final result by 
identifying which feature instance contains 
feature F, rather than by tracking down all its 
child-features laboriously. 
 
4. A Generic Feature Modeling 
Environment (GFME) 
 
    We use the Generic Modeling Environment 
(GME) [GME01] to build GFME. GME is a 
configurable toolkit for creating domain-specific 
modeling and program synthesis environments. 
The configuration is accomplished through 
metamodels specifying the modeling paradigm 
(modeling language) of the application domain. 
The modeling paradigm defines the family of 
models that can be created using the resultant 
modeling environment. The metamodels 
specifying the modeling paradigm are used to 
automatically generate the target domain-specific 
environment. GME provides the Builder Object 
Network (BON) framework for building 
interpreters to interpret domain models built in 
the domain-specific environment.  The 
interpretation process can be used to generate 
reusable assets for the domain engineering phase. 
The BON API provides leverages for access to 
the domain models, which makes the above 
algorithm implementable.  With all those 
facilities of GME, we believe it has the best tool 
support for feature modeling. 
    GFME provides the modeling environment 
for building feature diagrams with the structure 
as described in Figure 4. Figure 8 provides the 
screenshot of the GFME. Note at the lower-right 
corner is the interface to specify such attributes 
as the relationship with its child-nodes for a node 
under focus (here “TransactionSubsystem”) in 
the environment.   In   the   same   way,   we  can  
specify  the   attributes    for   those   connections 
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between feature nodes. The dashed   lines denote 
the various kinds of dependencies or constraints 
to be enforced between feature nodes. Currently 
we just generate the set of feature instances from 
feature diagram satisfying all specified 
constraints. With full control of the interpretation 
process (i.e., writing interpreter code via BON 
API), we can generate application code from 
feature diagrams on demand. 
 
5. Conclusion 
 
      Feature Modeling is the core part of FODA. 
Our ongoing UniFrame project [Raje02] requires 
feature modeling for building a generative 
domain model. The reusable assets generated 
from feature modeling after normalization, 
expansion and constraint  checking will be 
output into XML files. The reusable assets serve 
two purposes: 1) for clients to initiate natural-
language-like queries [Lee02] in the problem 
space [Czar00];   2)  to provide   a   guideline   
for component providers to produce component 
families in the solution space [Czar00]. The 
current practice of feature modeling remains at 
the manual or semi-automatic level, which 
hinders it from becoming  widely applied. This  
paper applies  normalization over the traditional  
feature diagram and presents an  algorithm  to  
generate complete feature instances from a 
feature diagram under constraints. The algorithm 
is adopted in GFME, which provides an 
efficient, automatic FODA environment.  
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